
Rounded Gaussians
Fast and Secure Constant-Time Sampling for Lattice-Based

Crypto

Andreas Hülsling, Tanja Lange, Kit Smeets

26 Sep 2017



Lattice-based signatures

I Bimodal Lattice Signature Scheme (BLISS) (CRYPTO ’13 by
Léo Ducas and Alain Durmus and Tancrède Lepoint and
Vadim Lyubashevsky)

I Pretty short and efficient; already included in strongSwan
(library for IPsec-based VPN).

I Needs noise from discrete Gaussian distribution.

I CHES 2016: Flush, Gauss, and Reload A Cache-Attack on the
BLISS Lattice-Based Signature Scheme by Groot Bruinderink,
Hülsing, Lange, and Yarom.

I ACM-CCS 2017: To BLISS-B or not to be – Attacking
strongSwan’s Implementation of Post-Quantum Signature by
Pessl, Groot Bruinderink, and Yarom.

2

https://wiki.strongswan.org/projects/strongswan/wiki/Bliss
http://eprint.iacr.org/2016/300
http://eprint.iacr.org/2016/300
http://eprint.iacr.org/2017/490
http://eprint.iacr.org/2017/490


Simplified BLISS

I Work in R = Z[x ]/(xn + 1), n = 2r , and
Rq = (Z/q)[x ]/(xn + 1) for q prime.

I Secret key S = (s1, s2) = (f , 2g + 1) ∈ R2
q , f , g sparse in

{0,±1}n.

I Public key A = (a1, a2) ∈ R2
2q, with key equation

a1s1 + a2s2 ≡ q mod 2q.

I Computed as aq = (2g + 1)/f mod q (restart if f is not
invertible); then A = (2aq, q − 2) mod 2q.

I Can verify key guess for f with key equation; g computable.

I To sign, sample y from discrete n-dim Gaussian DZn,σ.

I c = H(a1, y , public stuff) // H special hash function.

I choose a random bit b.

I Signature: (z , c) with z = y + (−1)bs1 · c mod 2q.

I Can get ±s1 = (z − y)/c ∈ Rq if we know y , the error
vector/polynomial; (c needs to be invertible).

3



Simplified BLISS

I Work in R = Z[x ]/(xn + 1), n = 2r , and
Rq = (Z/q)[x ]/(xn + 1) for q prime.

I Secret key S = (s1, s2) = (f , 2g + 1) ∈ R2
q , f , g sparse in

{0,±1}n.

I Public key A = (a1, a2) ∈ R2
2q, with key equation

a1s1 + a2s2 ≡ q mod 2q.

I Computed as aq = (2g + 1)/f mod q (restart if f is not
invertible); then A = (2aq, q − 2) mod 2q.

I Can verify key guess for f with key equation; g computable.

I To sign, sample y from discrete n-dim Gaussian DZn,σ.

I c = H(a1, y , public stuff) // H special hash function.

I choose a random bit b.

I Signature: (z , c) with z = y + (−1)bs1 · c mod 2q.

I Can get ±s1 = (z − y)/c ∈ Rq if we know y , the error
vector/polynomial; (c needs to be invertible).

3



Discrete Gaussian

I Continuous Gaussian

ρv ,σ(x) =
1√

2πσ2
exp

(
−‖s − v‖2

2σ2

)
with center v and variance s.

I Take integer values of continuous Gaussian; sample x with
probability

Dv ,σ(x) = ρv ,σ(x)/ρσ (Z) ,

where ρσ (Z) =
∑

z∈Z ρσ(z).

I Complicated to do in practice; relatively nice to analyze.

I Do this m times for m-dimensional discrete Gaussian.

4



Rounded Gaussian

I Idea: Sample z ∈ R from continuous Gaussian, round to
nearest integer x ∈ Z; output x .

I In math:

Rv ,σ(x) =

∫ x+0.5

x−0.5
ρv ,σ(s)ds.

I Easy to implement, harder to analyze.

I Hard part: needed to redo all proofs for BLISS etc..

I Box-Muller sampling is <50 lines of code on top of Fog’s VCL
(constant-time vectorized implementation of sin, cos, log,
sqrt, ...)

5



Rounded Gaussian

I Idea: Sample z ∈ R from continuous Gaussian, round to
nearest integer x ∈ Z; output x .

I In math:

Rv ,σ(x) =

∫ x+0.5

x−0.5
ρv ,σ(s)ds.

I Easy to implement, harder to analyze.

I Hard part: needed to redo all proofs for BLISS etc..

I Box-Muller sampling is <50 lines of code on top of Fog’s VCL
(constant-time vectorized implementation of sin, cos, log,
sqrt, ...)

5


